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Abstract
Purpose – The purpose of this paper is to develop a compressive sensing (CS) algorithm for noisy solder joint imagery compression and recovery.
A fast gradient-based compressive sensing (FGbCS) approach is proposed based on the convex optimization. The proposed algorithm is able to
improve performance in terms of peak signal noise ratio (PSNR) and computational cost.
Design/methodology/approach – Unlike traditional CS methods, the authors first transformed a noise solder joint image to a sparse signal by a
discrete cosine transform (DCT), so that the reconstruction of noisy solder joint imagery is changed to a convex optimization problem. Then, a
so-called gradient-based method is utilized for solving the problem. To improve the method efficiency, the authors assume the problem to be convex
with the Lipschitz gradient through the replacement of an iteration parameter by the Lipschitz constant. Moreover, a FGbCS algorithm is proposed
to recover the noisy solder joint imagery under different parameters.
Findings – Experiments reveal that the proposed algorithm can achieve better results on PNSR with fewer computational costs than classical
algorithms like Orthogonal Matching Pursuit (OMP), Greedy Basis Pursuit (GBP), Subspace Pursuit (SP), Compressive Sampling Matching Pursuit
(CoSaMP) and Iterative Re-weighted Least Squares (IRLS). Convergence of the proposed algorithm is with a faster rate O(k�k) instead of O(1/k).
Practical implications – This paper provides a novel methodology for the CS of noisy solder joint imagery, and the proposed algorithm can also
be used in other imagery compression and recovery.
Originality/value – According to the CS theory, a sparse or compressible signal can be represented by a fewer number of bases than those required
by the Nyquist theorem. The new development might provide some fundamental guidelines for noisy imagery compression and recovering.

Keywords Noisy solder joint imagery, Compressive sensing (CS), Convex optimization, Gradient-based method, Orthogonal matching pursuit,
Greedy basis pursuit, Subspace pursuit and compressive sampling matching pursuit, Iterative re-weighted least squares

Paper type Research paper

1. Introduction
In recent years, the compressive sensing (CS) theory has
played an important role in sampling paradigm and data and
signal processing. A sparse or compressible signal can be
represented by a fewer number of bases than those required by
the Nyquist theorem when it is mapped to the space with bases
incoherent to the sparse data space (Donoho, 2006; Donoho
et al., 2006). In the literature, most references talk about raw
data compression and imagery reconstruction on the basis of
the CS theory.

The CS has successfully been applied in quite a wide variety
of areas, including photography (Huynh-Thu and Ghanbari,

2008), shortwave infrared cameras, optical system research
(Donoho et al., 2012), audio and music processing (Godsill
et al., 2007) and MRI Vasanawala et al., 2010). Particularly, in
Jørgensen et al. (2012), an iterative image reconstruction
method in X-ray CT is proposed through CS. Bhattacharya
et al. (2007) provided a method of fast encoding for Synthetic
Aperture Radar (SAR) raw data by using the CS theory to
complete SAR raw data sparsity and processing.
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Nowadays, surface mount technology (SMT) components
have widely been used in the electronics industry. The
surface-related defects include pseudo-solder (Wu and Zhang,
2011), insufficient solder, component shift, wrong component
and tombstoning (Janoczki et al., 2010). To detect them, some
approaches such as automatic optical inspection (AOI) and
X-ray inspection, etc., have been applied to SMT-based
production. The methods have proved to be a useful
supplement to circuit and functional testing (Xie et al., 2011,
Benedek et al., 2013). However, SMT brings a great challenge
for defect inspection with the development of solder bumps
towards ultra-fine pitch and high density. The traditional
non-destructive detection methods are insufficient for solder
joint assessment. This is not only due to their own factors,
including slow speed and low precision, but also due to
external interference, including light and noise (Ong et al.,
2008). The solder joint image could be corrupted with noise
during the image capturing process (Said et al., 2011). The
noise could greatly affect the inspection result (Sankaran et al.,
1998). The common noises possibly existing in solder joint
images include Gaussian noise, Thermal noise, Salt and
Pepper noise, Rand noise and so on.

To improve the inspection rate of defects, some image
processing technologies, such as image compression, image
enhancing and image filtering, are used in AOI and Solder
Paste Inspection (SPIs) (Xiong et al., 2012). The authors (Lu
et al., 2011) propose an improved median filter to remove the
Gaussian noise in solder joint defect inspection. In the work by
Said et al. (2011), median filter is used in eliminating salt and
pepper noise in solder joint images. Usually, wavelet
transform and wavelet package transform are cast into image
compression (Karami et al., 2012; Bayazit, 2011). Due to the
requirement for steadily increasing resolution for the imagery
acquisition platforms, the amount of image data produced is
managed by storage capabilities and the slow inspection speed
(Wu et al., 2013). In our previous work (Zhao et al., 2014), an
improved block CS algorithm was developed for solder joint
imagery compression and recovery, and it achieved a better
performance.

In the literature, there are few works talking about noisy
solder joint imagery data compression and reconstruction
based on the CS theory. In this paper, we present a fast-speed,
high-precision CS algorithm for noisy solder joint imagery
compression and recovery. In our approach, we study
data compression and reconstruction through using the
convex optimization and a fast gradient-based compressive
sensing (FGbCS).

The whole paper is organized as follows. The signal
recovery based on convex optimization problems is described
in Section 2. In Section 3, the noisy solder joint imagery
reconstruction is investigated through the adoption of the CS
with gradient-based method, and a fast FGbCS recovery
algorithm is discussed in detail. In Section 4, some
experimental results are shown and compared for different
methods. Conclusions and open problems are summarized in
Section 5.

2. Convex optimization with gradient-based
method
The convex optimization problem we want to deal with is one
of the following (Boyd and Vandenberghe, 2009):

minize g0(x)
subject to gi(x) � bi, i � 1, 2, . . ., m, (1)

where the functions g0, . . ., gm: Rn ¡ R are convex, that is,
satisfy:

gi(�x � �y) � �gi(x) � �gi(y) (2)

for all x, y � R and all �, � � R with ����1, ��0,
��0.

One of the simplest methods to solve equation (1) is the
gradient algorithm to generate a sequence xk via:

x0 � Rn, xk � xk�1 � tk	g(xk�1), (3)

where tk 
 0 is a suitable step size. It is very well known that
the gradient iteration equation (3) can be regarded as a
proximal regularization (Figueiredo et al., 2007) of the
linearized function g at xk�1 and equivalently rewritten as:

xk � arg min
x �g(xk�1) � �(x � xk�1), 	g(xk�1) 


�
1

2tk
�x � xk�1�2

2�. (4)

Applying the same idea to the non-smooth l1 regularized
problem:

min�g(x) � ��x�1: x � Rn� (5)

leads to the following iterative scheme:

xk � arg min
x �g(xk�1) � �x � xk�1, 	g(xk�1) 


�
1

2tk
�x � xk�1�2

2 � ��x�1�. (6)

After constant terms are ignored, equation (6) can be
rewritten as:

xk � arg min
x � 1

2tk
�x � (xk�1 � tk	g(xk�1))�2

2 � ��x�1� (7)

Many researchers have investigated equation (7) through
various techniques. A more general result can be found in the
study by Beck and Teboulle (2009) with its convergence O(1/
K).

In the following, we convert the problem of CS for noisy
solder joint imagery to a convex minimization model and take
advantage of a gradient-based method to improve
convergence and efficiency.

3. Compressive sensing for noisy solder joint
imagery
The CS theory has three major steps to reconstruct an image:
construction of k-sparse representation, compression and
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reconstruction. In the first step, k is the number of the
non-zero entries of sparse signals. Most natural signals can be
made sparse by applying orthogonal transforms, such as
Wavelet Transform, Fast Fourier Transform and discrete
cosine transform (DCT) (Candes and Wakin, 2008). In the
second step, compression, the random measurement matrix is
utilized to the sparse signal according to certain equations.
The third step is the sparse signal reconstruction. The details
of CS theory can be seen in the study by Zhao et al. (2014).

3.1 Noisy solder joint imagery optimization with
Lipschitz gradient
Given a noise solder joint imagery, the noise is added into the
compressive measurement vector as follows:

y � s � noise, (8)

where noise is an M-dimensional noise vector.
Let us think about an objective function F�x� � g�x� � n

�x�, where g(x) is a composite type convex function, and its
Lipschitz gradient is shown as follows (Nesterov, 1983):

�g(x) � 	g(y)�2	� � L(g) �x � y�2 for every x, y (9)

where �.� denotes the standard Euclidean norm and L�g� � 0
is the Lipschitz constant of 	g. Let us approximate the
function F�x� at point xk�1 by the following quadratic function:

QL(x, xk�1) � g(y) � �x � xk�1, 	g(xk�1) 


�
L
2

�x � xk�1�2
2 � n(x), (10)

which admits a unique minimizer:

PL(xk�1) � arg min
x

�QL(x, xk�1), x � Rn� (11)

Simple algebra shows that (ignoring constant terms inxk�1):

PL(xk�1) � arg min
x �L

2
�x � (xk�1 �

1
L

	g(xk�1))�2
2 � n(x)�.

(12)

Clearly, in equation (4), xk can be replaced by:

xk � PL(xk�1) (13)

where L is 1/tk. Apparently, as long as the constant L in
equation (8) is taken no less than Lipschitz constant L�g�, it
follows that:

g(x) � n(x) � g(xk�1) � � 	g(xk�1), x � xk�1


�
L
2

�x � xk�1�2
2 � n(x).

(14)

In the above calculation, 1/tk is replaced by a constant L which
is related to the Lipschitz constant L�g�. One may verify that
the right-hand side of equation (14) is exactly equal to QL

�x, y� in equation (10). In other words, QL�x, y� is an
easier-to-deal-with convex upper bound of the objective
function F(x). By minimizing the upper bound, QL�x, y�
together with xk given by equation (13) offers a tight upper
bound of F(x), provided L � L(f).

3.2 Fast gradient-based compressive sensing algorithm
for noisy solder joint imagery
The major challenge in the algorithm of compressive sampling
is to approximate a noise signal for given samples in a vector
form. In our method, equation (8) is often used more naturally
to study the following problem:

min mize ��Tx � y�2
2 � ��x�1 (15)

where � is an N � N orthogonal basis matrix and  is an
M � N random measurement matrix (M � N).

Let us begin with equation (15). Assumed equation (15) is
convex with smooth Lipschitz gradient. For any L � 0, the CS
of noisy solder joint imagery formulated by equation (15)
becomes:

xk � arg min
x �L

2
�x � xk�1�

2 � ��x�1�, (16)

where xk � PL�xk�1�. So:

xk � arg min
x �L

2
�x � (xk�1 �

1
L

	f(xk�1))�2
2 � ��x�1� (17)

or equivalently:

xk � arg min
x �L

2
�x � dk�2

2 � ��x�1�, (18)

where dk � xk�1 � 1 / L	f�xk�1�. By equation (15), dk can be
rewritten as:

dk � xk�1 �
1
L

(�T)T(�Txk�1 � y) (19)

Because both the one-norm and the two-norm are separable,
that is, each of them is only the sum of n non-negative terms
that only involves a single (scalar) variable, iterated xk in
equation(17) can be computed by a straightforward shrinkage
step (assuming dk in equation(19) has been figured out)
through:

xk � ��L(dk) (20)

where �� is a shrinkage operator which maps Rn to Rn with the
i -th entry of the output vector given by:

��(d)�i � (�di���)� sgn(di) (21)

where �u�� � max�u, 0�.
As per the fact described above, we may call the approach a

FGbCS for noisy solder joint imagery reconstruction. The
detailed procedure in the algorithm is shown as follows in
Algorithm 1:

Algorithm 1 FGbCS (,�, s, �, K, M)
Input:

1 L � L�g� � aLipschitz constant of 	g�x� in equation(9);
2 A signal s,� � RN�N is a signal sparse transform matrix,

sp � �s;
3 A measurement matrix �RN�N, x � sp;
4 The iteration counter K and noise parameter �, and M is

the chosen row number of .
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Procedure
Initialize, y1 � x0 � Rn, t1 � 1.
If 1 � k � K, compute

1 xk � PL�yk� by solving the problem in equation (13).

2 tk�1 �
1��1�4tk

2

2

3 yk�1 � xk � 	tk�1
tk�1


�xk � xk�1�

End
Output:
A sparse approximation xk of the target signal and then

reconstruction of the resulting signal s= � �Txk.
Compared with other reconstruction algorithms, the

proposed algorithm has the following characteristics:
● The CS for a noise signal may be estimated as a convex

minimization problem, and the gradient-based method is
used to solve the problem.

● The problem of noise signal reconstruction is assumed to
be the convex with the Lipschitz gradient. An iteration
parameter 1/tk is replaced by a constant 1/L, which is
related to the Lipschitz constant L(f).

● According to the fact described in Nesterov (1983), one
can easily verify that the convergence of FGbCS is O(1/k2).

4. Experimental and results
To evaluate the quality of the reconstructed results, the mean
square error (MSE) and peak signal to noise ratio (PSNR) are
used for the comparison in this paper. They are defined by
(Huynh-Thu and Ghanbari, 2008):

MSE �
1

M � N �
i�1

M

�
j�1

N

(f̂ (i, j) � f(i, j))2 (22)

PSNR � 10log10� 2552

MSE� (23)

Figure 1 Original image and sparse image

Figure 2 Reconstruction result by using the different methods
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where M and N are the image dimensional numbers, f̂ is the
de-noised image and f is the original noiseless image. In our
study, the PSNR is used to compare with the experiment
results which were implemented on a Pentium IV with 3.2
GHz CPU and 2,048 MB RAM.

During the running of these experiments, several classical
algorithms, such as Orthogonal Matching Pursuit (OMP)

(Cai and Wang, 2011), Greedy Basis Pursuit (GBP)
(Huggins and Sucker, 2007), Subspace Pursuit (SP) (Dai
and Milenkovic, 2009), Compressive Sampling Matching
Pursuit (CoSaMP) (Davenport et al., 2013) and Iterative
Re-weighted Least Squares (IRLS) (Daubechies et al.,
2010), were selected to compare with the FGbCS.

An original gull-wing leaded solder joint image was used
as a test image in Figure 1(a) (size 256 � 256). Rand noise
is one common noise in images, and the original image is
degraded by Rand noise (� � 10) in Figure1(b). The sparse
transform DCT matrix and sparse image are shown in
Figure 1(c and d).

When the row of measurement matrix is M � 230, the
reconstruction results based on different algorithms are shown
in Figure 2(a-e). The reconstruction result based on FGbCS
with � � 20 and K � 40 is shown in Figure 2(g) when � � 20
and K � 80.

One can see by the comparison of Figure 1(b-g) that our
method can yield better results in PSNR than other CS
algorithms. The reconstruction result in PSNR and runtime
for our method and other methods are shown in Table I.

Table I. Reconstruction result in peak signal noise ratio and runtime by
using different methods

Methods/performance PSNR (dB) Runtime (s)

OMP 24.3983 3.583
GBP 24.9407 32.445
SP 25.1229 20.107
CoSaMP 25.1848 36.158
IRLS 27.0805 96.150
FGbCS (� � 20 K � 40) 27.6147 4.5080
FGbCS (� � 20 K � 80) 28.2991 5.1140

Figure 3 Performance comparisons in rand noises solder joint imagery reconstruction
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From Table I, we know that the FGbCS algorithm spends the
least runtime than other methods. IRLS, SP, CoSaMP and
GBP spend more time in noisy solder joint imagery
reconstruction.

To compare their reconstruction performances in detail,
more experiments were also performed. When Rand noise
� � 15, the reconstruction runtime and PSNR with
different rows of measurement matrices are shown in Figure
3(a and b). While implementing the FGbCS, we set � � 20
and K � 40.

Then, more experiments were done by adding
salt-and-pepper noise (the noise density was 0.01), as shown
in Figure 1(a). During the experiments, we set the row of
measurement matrix M � 230, the reconstruction runtime
and PSNR with different Gaussian are shown in Figure 4(a
and b). While implementing the FGbCS, we set � � 20 and
K � 80.

From Figures 3 and 4, one can see that:
● among those methods, the FGbCS can obtain better

reconstruction result in terms of PSNR as compared to
OMP, SP, CoSaMP, GBP and IRLS;

● the proposed method can run as fast as OMP methods in
noisy imagery reconstruction and is faster than SP,
CoSaMP, GBP and IRLS methods;

● with the increasing measurement matrix rows, the
proposed method can generate better reconstruction
accuracy with only a few runtime changes; and

● the proposed method has an improved performance and
good resilience to Rand noise and salt-and-pepper noise.

To compare the relationship between parameter � and K in
FGbCS, more experiments needed to be carried out. When
the solder joint is degraded by Rand noise � � 10, we set K �
60 and the row of measurement matrix M � 230. The
reconstruction of PSNR with different � is shown in Figure
5(a). If we set � � 10, then the row of measurement matrix
M � 230 and the reconstruction of PSNR with different K is
shown in Figure 4(b).

One may see from Figure 5 that if K � 60 and M � 230,
then FGbCS is able to yield a better performance when � is
around 15. If � � 10 and M � 230, then FGbCS can give a
better result when K � 50.

Figure 4 Performance comparisons in salt-and-pepper noise solder joint imagery reconstruction
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5. Conclusion
There is a challenging research problem in compressive sampling
to approximate a noise signal given a vector of samples. This
paper focuses on the development of compression and
reconstruction methods for noisy solder joint imagery based on
convex optimization. FGbCS is proposed in our paper. On the
one hand, we deal with the noisy imagery reconstruction as a
convex minimization problem and provide a new method. On
the other hand, to improve the efficiency, we consider the
problem of noise signal reconstruction assumed to be convex
with Lipschitz gradient. The step size in gradient iteration is
replaced by a constant 1/L, which is related to the Lipschitz
constant. The convergence of proposed algorithm is reduced
from O(1/k) to O(1/k2). In our future studies, more relationships
between parameter � and K will be needed to be tracked. The
FGbCS has an improved performance and good resilience to
rand noise and salt-and-pepper noise.
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